Step of Proof: p-conditional-to-p-first
11,40
postcript
pdf
Inference at
*
I
of proof for Lemma
p-conditional-to-p-first
:
A
,
B
:Type,
f
,
g
:(
A
(
B
+ Top)). [
f
?
g
] = p-first([
f
;
g
])
latex
by ((Auto)
CollapseTHEN (((Ext)
CollapseTHEN (Auto
))
))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
f
:
A
(
B
+ Top)
C1:
4.
g
:
A
(
B
+ Top)
C1:
5.
x
:
A
C1:
[
f
?
g
](
x
) = p-first([
f
;
g
])(
x
)
C
.
Definitions
[
f
?
g
]
,
Type
,
p-first(
L
)
,
[
car
/
cdr
]
,
x
:
A
.
B
(
x
)
,
s
=
t
,
A
List
,
t
T
,
[]
,
type
List
,
x
:
A
B
(
x
)
,
left
+
right
,
Top
Lemmas
p-conditional
wf
,
p-first
wf
,
top
wf
origin